Logical-Graph Interpretation of Scene in the Transformer Core of an Autonomous Drone
Abstract
This paper presents the concept of an intelligent drone equipped with a semantic core designed to construct logical-graph representations of the environment based on sensory data. The main objective is to develop an adaptive system capable not only of object recognition but also of forming causal, spatial, and functional relationships between objects to enable logical reasoning. The proposed approach integrates reinforcement learning techniques with graph-based semantics within a transformer architecture, thus ensuring autonomous operation and behavioral flexibility in partially observable environments.
References
Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser Ł., Polosukhin I. Attention is All You Need // Advances in Neural Information Processing Systems. - 2017. - Vol. 30.
Battaglia P., Hamrick J., Bapst V. et al. Relational inductive biases, deep learning, and graph networks // arXiv preprint. - 2018. - arXiv:1806.01261. - 21 p.
Pearl J. Causality: Models, Reasoning and Inference. - 2nd ed. - Cambridge: Cambridge University Press, 2009. - 432 p. https://doi.org/10.1017/CBO9780511803161
Marcus G. The Next Decade in AI: Why Common Sense Matters // arXiv preprint. - 2020. - arXiv:2002.06177. - 12 p.
Kipf T. N., Welling M. Semi-Supervised Classification with Graph Convolutional Networks // Proc. Int. Conf. on Learning Representations (ICLR). - 2017.
Hamilton W. L., Ying R., Leskovec J. Representation learning on graphs: Methods and applications // IEEE Data Engineering Bulletin. - 2017. - Vol. 40, No. 3. - P. 52-74.
Chen Y., Dai X., Liu M. et al. A Survey on Vision Transformer // arXiv preprint. - 2021. - arXiv:2012.12556. - 30 p.
Brachman R. J., Levesque H. J. Knowledge Representation and Reasoning. - San Francisco: Morgan Kaufmann, 2004. - 381 p. https://doi.org/10.1016/B978-155860932-7/50099-6
Zellers R., Bisk Y., Farhadi A., Choi Y. From Recognition to Cognition: Visual Commonsense Reasoning // Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). - 2019. - P. 6720-6731. https://doi.org/10.1109/CVPR.2019.00688
Copyright (c) 2025 Назарій Лопух, Петро Жук, Адріан Торський (Автор)

This work is licensed under a Creative Commons Attribution 4.0 International License.