Modeling the energy characteristics of a toroidal solenoid

  • Богдан Каркульовський

Abstract

The study of the energy performances of a toroidal solenoid, which is a motion part of MEMS is
carried out. The close formulas are given to describe the interconnection of the electrical field
power and the mechanical forces in MEMS. The given analytical formulas open the ability to
calculate the stored power by the electrical field components. The obtained results open a way to
model and optimize the parameters of running parts of MEMS, in particular the actuators, sensors
etc.

References

Verspecht J., Horn J., Betts L., Gunyan D., Pollard R., Gillease C., and Root D. E., Extension of X parameters to include long-term dynamic memory effects. IEEE MTT-S Int. Microwave Symp. Dig.,June 2009, 741-744.

Senturia S. D., Microsystem Design. Norwell, MA: Kluwer, 2001. https://doi.org/10.1007/b117574

Rebeiz G. M., RF MEMS, Theory, Design and Technology. Hoboken, NJ: Wiley, 2003. https://doi.org/10.1002/0471225282

Ventra M. D., Pershin Y. V., and Chua L. O., Circuit elements with memory: Memristors,

memcapacitors, and meminductors. Proc. IEEE., Vol. 97, No. 10, Oct. 2009, 1717-1724. https://doi.org/10.1109/JPROC.2009.2021077

Mestrom R. M. C., Fey R. H. B., and Nijmeijer H., Phase feedback for nonlinear MEM resonators in

oscillator circuits. IEEE/ASME Trans. Mechatron., Vol. 14, No. 4, Aug. 2009, 423-433. https://doi.org/10.1109/TMECH.2009.2023447

Kaajakari V., Mattila T., Lipsanen A., and Oja A., Nonlinear mechanical effects in silicon longitudinal

mode beam resonators. Elsevier Sens. Actuators A: Phys., Vol. 120, No. 1, Apr. 2004, 64-70. https://doi.org/10.1016/j.sna.2004.11.010

Kaajakari V., Mattila T., Oja A., Kiihamäki J., and Seppä H., Square-extensional mode single-crystal

silicon micromechanical resonator for low-phase-noise oscillator applications. IEEE Electron Device

Lett., Vol. 25, No. 4, Apr. 2004, 173-175. https://doi.org/10.1109/LED.2004.824840

Kaajakari V., Koskinen J. K., and Mattila T., Phase noise in ca-pacitively coupled micromechanical

oscillators. IEEE Trans. Ul-trason., Ferroelect., Freq. Contr., Vol. 52, No. 12, Dec. 2005, 2322-2331. https://doi.org/10.1109/TUFFC.2005.1563277

Holmgren O., Kokkonen K., Veijola T., Mattila T., Kaajakari V., Oja A., Knuuttila J. V., and Kaivola M., Analysis of vibration modes in a micromechanical square-plate resonator. J. Micromech. Micro eng., Vol. 19, No. 1, Jan. 2009, 11 p. https://doi.org/10.1088/0960-1317/19/1/015028

DeMartini B. E., Butterfield H. E., Moehlis J., and Turner K. L., Chaos for a microelectromechanical

oscillator governed by the nonlinear Mathieu equation. J. Microelectromech. Syst., vol. 16, No. 6, Dec. 2007, 1314-1323.

Mestrom R. M. C., Fey R. H. B., and Nijmeijer H., Phase feedback for nonlinear MEM resonators in oscillator circuits. IEEE/ASME Trans. Mechatron., Vol. 14, No. 4, Aug. 2009, 423-433. https://doi.org/10.1109/TMECH.2009.2023447

Lyshevski S. E., Nano- and Micro-Electromechanical Systems: Fundamentals of Nano- and Microengineering. 2nd Edition, Boca Raton, London, New York, Washington: CRS Press, 2000.

Захарія Й. А., Методит прикладної електродинаміки. Львів: Бескид Біт, 2003.

Afanasiev O. N., Dubovik V. M., Electromagnetic properties of toroidal solenoid. J. Phys. A: Math. Gen., Vol. 25, 1992,. 4869-4886. https://doi.org/10.1088/0305-4470/25/18/020

Published
2024-12-03
How to Cite
Каркульовський, Б. (2024). Modeling the energy characteristics of a toroidal solenoid. PHYSICO-MATHEMATICAL MODELLING AND INFORMATIONAL TECHNOLOGIES, 1(39), 56-63. https://doi.org/10.15407/fmmit2024.39.056