Mathematical models for leak identification in long-distance gas pipeline. Stationary operational mode

Fìz.-mat. model. ìnf. tehnol. 2017, 25:157-169

  • Vasyl Chekurin Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
  • Olga Khymko Lviv Polytechnic National University
Keywords: models of gas dynamics in the pipes, direct and inverse tasks, identification of leakages algorithms

Abstract

Direct and inverse problems for leak identification in long distance gas pipelines in stationary operational modes on the base of data obtained by pressure monitoring in pipeline’s inlet, outlet and in several intermediate check points have been formulated. Algorithms for solving of the formulated problems have been developed and their numerical study has been done. On this basis methods for leak detecting, its intensity and location determination with the use of the data of pressure monitoring have been suggested. Quantitative evaluation of precisions of the proposed methods has been conducted.

References
  1. Murvay, P.-S., Silea, I. (2012). A survey on gas leak detection and localization techniques. Journal of Loss Prevention in the Process Industry, 25, 966-973.
    DOI https://doi.org/10.1016/j.jlp.2012.05.010
  2. (2010). Leak Detection Based Pipeline Integrity Systems. Glasgow: TUV NEL Ltd. Retrieved from http://www.tuvnel.com/_x90lbm/Leak_Detection_Based_Pipeline_Integrity_Systems.pdf.
    DOI https://doi.org/10.1016/B978-0-12-802240-5.00013-3
  3. Geiger, G. (2012). Principles of Leak Detection. Breda, The Netherlands: Krone Oil&Gas. Retrieved from http://krohne.com/fileadmin/content/files2/PipePatrol/KROHNE_Gerhard_- Geiger_Principles_of_Leak_Detection_2012.pdf.
  4. Wang, S., Zang, Z. (2007). Leak detection for Gas and Liquid Pipelines by Online Modeling. SPE Projects, Facilities & Construction, 1-9.
  5. Voevodin, A. F., Nikiforovskaya, V. S. (2009). Chislennyj metod opredeleniya mesta utechki zhidkosti ili gaza v truboprovode. Sib. zhurn. industr. matem, 12(1), 25-30.
  6. Charnyj, I. A. (1975). Neustanovivsheesya dvizhenie realnoj zhidkosti v trubah. M.: Nedra.
  7. Chekurin, V. F. (2010). Matematychna model perekhidnykh protsesiv perenesennia masy y impulsu v dovhomu hazoprovodi. Fizyko-matematychne modeliuvannia ta informatsiini tekhnolohii, 1, 210-219.
  8. Bobrovskij, S. A., Sherbako,v S. G., Yakovlev, E. I. (1976). Truboprovodnyj transport gaza. M: Nauka.
  9. Farzaneh-Gord, M., Khamforoush, A., Hashemi, S., Namin, H. P. (2010). Computing Thermal Properties of Natural Gas by Utilizing AGA8 Equation of State. International Journal of Chemical Engineering and Applications, 1(1), 20-24.
    DOI https://doi.org/10.7763/ijcea.2010.v1.4
  10. Hairer, E., Norsett, S. P., Wanner, G. (2008). Solving Ordinary Differential equations I. Nonstiff Problems. Second Revised Edition. Berlin Heidelberg: Springer-Verlag.
Published
2018-11-19
How to Cite
Chekurin, V., & Khymko, O. (2018). Mathematical models for leak identification in long-distance gas pipeline. Stationary operational mode. PHYSICO-MATHEMATICAL MODELLING AND INFORMATIONAL TECHNOLOGIES, (25), 157-169. https://doi.org/10.15407/fmmit2017.25.157