Hermitian splines with exponential power links with an odd number of parameters
Abstract
A Hermitian spline with an exponential-power link of the form W2,2(x) with five parameters is constructed: expressions for calculating its parameters are derived and the conditions for its existence are established. The formula for calculating the error of the balanced approximation of functions by Hermitian splines with this link and the expression for the kernel of the approximation error are given. The results demonstrate better accuracy of approximation by Hermitian splines with an exponential-power link than with a polynomial link with the same
References
Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L. Metody splayn-funktsiy.– M.: Nauka 1980.–352 s.
Korneychuk N.P. Splayny v teorii priblizheniya.- M.: Nauka, 1984.- 352 s.
Pizyur Ya.V. Ermitovi splainy z lankamy u vyhliadi loharyfma vid mnohochlena z parnoiu kilkistiu parametriv // Visnyk DU ”Lvivska politekhnika”. Prykladna matematyka, 1998 r., № 337, Tom 2.- S. 374-377.
Pizyur Ya.V. Nablyzhennia funktsii ermitovymy splainamy z eksponentsialnymy lankamy // Visnyk NU «Lvivska politekhnika». «Fizyko-matematychni nauky», -2007.- №566.- S. 68-75.
Pizyur Ya.V., Hnativ B.V. Ermitovi splainy z lankamy u vyhliadi sumy mnohochlena ta eksponenty z neparnoiu kilkistiu parametriv // Fizyko-matematychne modeliuvannia ta informatsiini tekhnolohii: naukovyi zbirnyk. – 2021. – № 33. – С. 110–114.
Markovych B., Medynskyi I., Pizyur Ya. Modeling of functional dependences by hermitian splines with exponential-power expression in links // Mathematical Modeling. – 2022. – Vol. 6, No. 1. – P. 3–5.
Malachivskyy P. S., Pizyur Y. V., Andrunyk V. Chebyshev approximation by the sum of the polynomial and logarithmic expression with hermite interpolation // Cybernetics and Systems Analysis. – 2018. – Vol. 54, No. 5. – P. 765–770.
Malachivskyy P., Pizyur Y. Chebyshev approximation of the steel magnetization characteristic by the sum of a linear expression and an arctangent function // Mathematical Modeling and Computing. – 2019. – Vol. 6, № 1. – P. 77–84.
Ligun A.A., Storchay V.F. O nailuchshem vybore uzlov pri priblizhenii funktsiy lokalnymi ermitovymi splaynami // Ukr. mat. zhurn.- 1980.- 32, # 6.- S. 824-830.
C. de Boor. A Practical Guide to Splines. – Springer-Verlag, 1978.
Popov B.A. Ravnomernoie priblizhenie splaynami.- Kiev: Nauk. dumka, 1989.- 272 s.
Pizyur Ya.V., Popov B.A. Ermitovyie splayny s eksponentsialnymi i logarifmicheskimi zvenyami // Otbor i obrabotka informatsii.– 1989.– Vyp. 3.– S. 26-31.
Copyright (c) 2023 Ярополк Пізюр, Юрій Карась (Автор)

This work is licensed under a Creative Commons Attribution 4.0 International License.