Approximation of discontinuous 3D functions by discontinuous interflatation splines
Abstract
The paper develops a method of approximating a three-dimensional body, which is described by a discontinuous 3D function, using a discontinuous spline interflatation operator. The case is considered when the studied body is completely covered by a system of elementary rectangular elements (parallelepipeds). A function describing a three-dimensional body can have discontinuities of the first kind on the lines or planes of a given system of parallelepipeds. In the article, a discontinuous spline is constructed - an interfletant, which uses one-sided function traces along a given partition system as experimental data; a theorem on the approximation error of the constructed discontinuous spline is presented. This method of approximation can be used in remote methods of studying objects.
References
Lytvyn O.M., PershynaI.I. Matematychnamodelvidnovlenniatryvymirnykhobiektivzayikhtomohramamynasystemitrokhhruppererizanykhploshchyn z vykorystanniaminterfletatsiifunktsii. – Dopovidi NANU, 2005. – pp. 67-71
Serhiienko I.V., Zadiraka V.K,,Lytvyn O.M., PershynaI.I. Teoriiarozryvnykhsplainivtayiizastosuvannia v kompiuterniitomohrafii: monohrafiia – K. : Nauk. dumka, 2017. – 314 p
RadonJ., “ÜberdieBestimmungvonFunctionendurchihreIntegralverteLängsgewisserManningfaltigkeiten”, Ber. Verh. Sächs. Acad. Wiss. LeipzigMath. Nat. Kl,1917,vol.69, pp. 262 – 277.
SureshV., Koteswarao S. Rao, ThiagarajanG., andDasR.P. Denoisinganddetectingdiscontinuitiesusingwavelets. – IndianJournalofScienceandTechnology, №9(19), 2016. – pp. 1-4.
BozziniM., andRossiniM.Thedetectionandrecoveryofdiscontinuouscurvesfromscattereddata. –JournalofComputationalandAppliedMathematics, 2013, № 240.– pp. 148-162.
FaridaniA., Finch D. V., Ritman E. L., Smith K. T.Localtomography. II. – SIAM J. Appl. Math., 1997, 57 (4). – pp. 1095–1127.
Louis A. K.FeatureReconstructioninInverseProblems –InverseProblems, 2011, 27 (6), Art. 065010.
Pershyna I. I.Restorationofdiscontinuousfunctionsbydiscontinuousinterlinationsplines. – Radioelektronika, informatyka, upravlinnia. – Zaporizhzhia, 2022. – № 4. S. 29 – 39.
PershynaI. I.Nablyzhenniarozryvnykhfunktsiitrokhzminnykhrozryvnymyinterpoliatsiinymysplainamy. – Fizyko-matematychne modeliuvanniatainformatsiinitekhnolohii. – Lviv: Instytutprykladnyiproblemmekhaniky i matematykyim. Ya.S. Pidstryhacha NAN Ukrainy. – 2021. – Vyp.33 – pp. 99-104.
Copyright (c) 2023 Юлія Першина (Автор)

This work is licensed under a Creative Commons Attribution 4.0 International License.