Continuants algorithm for evaluation approximants of branched continued fraction

  • Oleksandra Manziy к. ф.-м. н., доцент , Національний університет «Львівська політехніка», вул. С.Бандери, 12, 79013, Львів
  • Volodymyr Hladun к. ф.-м. н., доцент, НУ «Львівська політехніка»
  • Viktor Seredynskyi магістр ОНП, НУ «Львівська політехніка»

Abstract

Algorithms for evaluating of approximants of continued fraction and its multidimensional generalization – a branched continued fraction of the general form are analyzed. The matrix algorithm is described for evaluating the value of the approximants of a branched continued C-fraction with two branches. The formulas for determining the position of the nonzero elements of the sparse matrix for the representation of the numerators and denominators of the approximants of the branched continued C-fraction with two branches have been established.

References

Blanch G.Numericalevaluationofcontinuedfractions. SIAM Rev., 6, 383–421 (1964). https://doi.org/10.1137/1006092.

Bodnar D. I.BranchedContinuedFractions. NaukovaDumka, Kyiv (1986). (InRussian)

Bodnar D.І., Kuchmins’ka K.Y.DevelopmentoftheTheoryofBranchedContinuedFractionsin 1996–2016. J MathSci 231 –P. 481–494 (2018). https://doi.org/10.1007/s10958-018-3828-7.

Cuyt A., BrevikPetersen V., Verdonk B., Waadeland H., Jones W.B.HandbooksofContinuedFractionsforSpecialFunctions. Berlin–Heidelberg–New York, Springer (2008). https://doi.org/10.1007/978-1-4020-6949-9_6.

Gautschi W.Computationalaspectsof three-termrecurrencerelations. SIAM Rev., 9, 24–82 (1967). https://doi.org/10.1137/100900.

Jones W.B., Thron W.J. ContinuedFractions: AnalyticTheoryandApplications (EncyclopediaofMathematicsanditsApplications, SeriesNumber 11), CambridgeUniversityPress; Reissueedition (2009).

Jones W.B., Thron W.J. Numericalstabilityinevaluatingcontinuedfractions. Math. Comp., 28(127):795–810 (1974). https://doi.org/10.2307/2005701.

Lorentzen L., Waadeland H.ContinuedFractions, Vol. 1, ConvergenceTheory, AtlantisPress/WorldScientific, Paris, Amsterdam (2008). https://doi.org/10.2991/978-94-91216-37-4_5.

Kuchmins’kaKh. Yo. Two-dimensionalcontinuedfractions. IAPMM NASU (2010).(InUkrainian)

Published
2023-06-26
How to Cite
Manziy, O., Hladun, V., & Seredynskyi, V. (2023). Continuants algorithm for evaluation approximants of branched continued fraction. PHYSICO-MATHEMATICAL MODELLING AND INFORMATIONAL TECHNOLOGIES, (37), 7-11. Retrieved from http://fmmit.lviv.ua/index.php/fmmit/article/view/295