Natural boundary conditions and nearsurface non-homogeneity in nonferromagnetic electro conductive half-space and layer

Fìz.-mat. model. ìnf. tehnol. 2017, 25:100-112

  • Taras Nahirnyj Center of Mathematical Modelling of IAPMM
  • Kostiantyn Tchervinka Ivan Franko National University o f Lviv , 1 Universytetska St.,79000, Lviv, Ukraine
Keywords: local heterogeneity, surface phenomena, dimensional effects, conductive non-ferromagnetic elastic body

Abstract

Within the framework of the local nonhomogeneous electroconductive solid model the regularities of near surface non-homogeneity in half-space and layer are studied. Two characteristic sizes are inherent to this non-homogeneity. It is shown that in a free of force load body the values of surface stress and surface, charge are uniquely defined by physical parameters of the material and the body. The electric double layer is the result of taking into account the structural non-homogeneity of material and the forces of Coulomb interaction.

References
  1. Nepijko, S. A. (1985). Fizicheskie svojstva malyh metallicheskih chastic. Kiev: Nauk. dumka.
  2. Vishnu, K. G., Strachan, A. (2012). Size effects in NiTi from density functional theory calculations. Physical Review B, 85(1).
  3. Shaofan, Li, Xin-Lin, Gao. (2013). Handbook of Micromechanics and Nanomechanics. CRC Press.
  4. Biener, J. et al. (2006). Size effects on the mechanical behavior of nanoporous Au. Nano letters, 6(10), 2379-2382.
  5. Miller, R. E., Shenoy, V. B. (2000). Size-dependent elastic properties of nanosized structural elements. Nanotechnology, (11)3, 139.
  6. Jing, G. Y. et al. (2006). Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Physical Review B., 73(23).
  7. Burak, J., Nahirnyj, T., Tchervinka, K., & Hetnarski, R. B. (Eds.). (2014). Local gradient thermomechanics. Encyclopedia of thermal stresses. Dordrecht: Springer Science+Business Media, 2794–2801.
    DOI https://doi.org/10.1007/978-94-007-2739-7_833
  8. Nahirnyi, T. S., Chervinka, K. A. (2012). Termodynamichni modeli ta metody termomekhaniky iz vrakhuvanniam prypoverkhnevoi ta strukturnoi neodnoridnostei. Lviv: Spolom.
  9. Nahirnyj, T., Tchervinka, K. (2015). Mathematical modeling of structural and near-surface non-homogeneites in thermoelastic thin films. International Journal of Engineering Science, 91, 49–62.
  10. Nahirnyj, T., Tchervinka, K. (2008). Interface Phenomena and Interaction Energy at the Surface of Electroconductive Solids. Computational Methods in Science and Technology, 14(2), 105–110.
    DOI https://doi.org/10.12921/cmst.2008.14.02.105-110
  11. Nahirnyi, T., Senyk, Yu. (2015). Prypoverkhneva neodnoridnist v elektroprovidnomu neferomahnitnomu pivprostori. Fizyko-matematychne modeliuvannia ta informatsiini tekhnolohii, 22, 111-116.
  12. Nahirnyj, T. S., Senyk, Y. A., Tchervinka, K. A. (2014). Modeling local non-homogeneity in electroconductive non-ferromagnetic thermoelastic solid. Mathematical Modeling and Computing, 1(2), 214-223.
  13. Bogotsky, V. S. (2006). Fundamentals of Electrochemistry. Wiley-Interscience.
  14. Nahirnyi, T. S., Chervinka, K. A. (2014). Osnovy mekhaniky lokalno neodnoridnykh pruzhnykh til. Osnovy nanomekhaniky II. Lviv: Rastr-7.
Published
2018-11-19
How to Cite
Nahirnyj, T., & Tchervinka, K. (2018). Natural boundary conditions and nearsurface non-homogeneity in nonferromagnetic electro conductive half-space and layer. PHYSICO-MATHEMATICAL MODELLING AND INFORMATIONAL TECHNOLOGIES, (25), 100-112. https://doi.org/10.15407/fmmit2017.25.100