On one method of constructing the cauchy kernel of the singular integral equation for clarifie the stress-strain state of the wedge system under anti-plane deformation
Abstract
An analytical approach to the construction of a singular integral equation (SIE) with Cauchy kernel is proposed, which makes it possible to clarify the stress-strain state of multi-wedge system with loaded radial cracks. This approach is based on the use of the theory of residues and the clarification of the solutions periodicity of the multi-wedge system characteristic equation. It is illustrated on the example of the construction of a SIE with Cauchy kernel for a two-wedge system with a loaded interfacial crack under the conditions of anti-plane deformation. For particular cases of geometric and mechanical parameters of the two-wedge system, the values necessary for constructing such an equation were calculated.
References
Savruk M. P. Longitudinal shift of an elastic wedge with cracks and notches. Fiz.-khim. mekhanika materialov. 2002. No. 5. P. 57-65.
Carpinteri A., Paggi M. Singular harmonic problems at a wedge vertex: mathematical analogies between elasticity, diffusion, electromagnetism, and fluid dynamics. Journal of Mechanics of Materials and Structures. 2011. Vol. 6, iss. 1-4. P. 113-125. https://doi.org/10.2140/jomms.2011.6.113
Jiménez-Alfaro S., Villalba V., Mantič V. Singular elastic solutions in corners with spring boundary conditions under anti-plane shear. International Journal of Fracture. 2020. 223(1-2). P. 197-220. doi: 10.1007/s10704-020-00443-5 https://doi.org/10.1007/s10704-020-00443-5
Savruk M., Kazberuk A. Stress concentration at notches. Springer International Publishing. AG, 2016. https://doi.org/10.1007/978-3-319-44555-7
Bodzhi D. B. Deystvie poverkhnostnykh nagruzok na sistemу iz dvukh soedinenykh po graniam uprugikh klin'ev, izgotovlennykh iz razlichnykh materialov i imeyushchikh proizvol'nye uglo rastvora. Trudy AOIM. Ser. Prikladnaya mekhanika. 1971. T. 38, No. 2. P. 87-96.
Carpinteri A., Paggi M. On the asymptotic stress field in angularly nonhomogeneous materials. Int. J. Fract. 2005. Vol. 135, No. 4. P. 267-283. https://doi.org/10.1007/s10704-005-4087-4
Makhorkin M., Makhorkina T., Pukach P. Matematychne modeliuvannia napruzhenodeformovanoho stanu kompozytnykh klinopodibnykh elementiv konstruktsii. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu: ahroinzhenerni doslidzhennia. 2021. Vol. 24. P. 121-130. https://doi.org/10.31734/agroengineering2020.24.121
Picu C. R., Gupta V. Stress singularities at triple junctions with freely sliding grains. Int. J. Solids Struct. 1996. Vol. 33, No. 11. P. 1535-1541. https://doi.org/10.1016/0020-7683(95)00112-3
Makhorkin M.I. Vyznachennia napruzheno-deformovanoho stanu bahatoklynovoho kompozytu za umov ploskoi zadachi teorii pruzhnosti. Visnyk Zaporizkoho natsionalnoho universytetu. 2015. No. 1. P. 107 - 117.
Makhorkin M., Makhorkina T. Analytical determination of the order of stress field singularity in some configurations of multiwedge systems for the case of antiplane deformation. Econtechmod. An international quarterly journal. 2017. Vol. 6, No. 3. P. 45-52.
Shahani A. R., Adibnazari S. Analysis of perfectly bonded wedges and bonded wedges with an interfacial crack under antiplane shear loading. Int. J. Solids Struct. 2000. Vol. 37. No. 19. P. 2639-2650. https://doi.org/10.1016/S0020-7683(98)00284-4
Kushnir R. M., Nikolishin M. M., Osadchuk V. A. Pryzhnyi ta pruzhno-plastychnyi hranichnyi stan obolonok z defektamy. Lviv: SPOLUM, 2003. 318 s.
Ufliand Ya.S. Integralni transformatsii v zadachakh teorii upruhosti. - M.: Nauka, 1963. - 368 s.
Makhorkin M., Sulym H. Zastosuvannia aparat uzahalnenykh funktsii do vyznachennia poriadku synhuliarnosti za pozdovzhnoho zsuvu u klynovii systemi. Visnyk Lviv. un-tu. Ser. mekh.-mat. 2006. Vyp.65. S. 128 - 136.
Bozhydarnyk V.V, Sulym H.T. Elementy teorii plastychnosti ta mitsnosti. - Lviv: Svit, 1999. - I-II. - 944 s.
Copyright (c) 2023 Микола Махоркін, Ігор Махоркін, Андрій Кунинець, Ярослав Глинський (Автор)

This work is licensed under a Creative Commons Attribution 4.0 International License.