Chebyshev approximation of functions of two variables by a rational expression with interpolation

Fìz.-mat. model. ìnf. tehnol. 2021, 33:33-39

  • Lev Melnychok Center of Mathematical Modelling of IAPMM
Keywords: Chebyshev approximation, rational expression, functions of two variables, mean-power approximation, least squares method

Abstract

A method for constructing a Chebyshev approximation by a rational expression with interpolation for functions of two variables is proposed The idea of the method is based on the construction of the ultimate mean-power approximation in the norm of space Lp at p° . An iterative scheme based on the least squares method with two variable weight functions was used to construct such a Chebyshev approximation. The results of test examples confirm the effectiveness of the proposed method for constructing the Chebyshev approximation by a rational expression with interpolation.

References
  1. Collatz, L., Krabs, W. (1973). Approximationstheorie: Tschebyscheffsche Approximation mit Anwendungen (Teubner Studienbücher Mathematik). Stuttgart: Teubner Verlag.
  2. Popov, B. A., Tesler, G. S. (1980). Approximation of Functions for Engineering Applications [in Russian], Naukova Dumka, Kyiv.
  3. Verlan, A. F., Adbusadarov, B. B., Ignatenko, A. A., Maksimovich, N. N. (1993). Methods and devices for interpreting experimental dependencies in the study and control of energy processes [in Russian], Naukova Dumka, Kyiv.
  4. Gerashchenko, O. A., Gordov, A. I., Eremina, A. K. (1989). Temperature measurements [in Russian], Naukova Dumka, Kyiv.
  5. Lenovenko, A., Malachivckyj, P., Vasyluk, V. (2002). Linearization of Sensor Characteristic Dependent on Two Variables. Materialy "VII Konferencja Naukowa Czujniki optoelektroniczne i elektroniczne" (COE 2002) Rzeszów, 5-8 zerwca 2002. Tom II.
  6. Melnychok, L. S., Popov, B. A. (1977). Best approximation of table functions with a condition, in: Algorithms and programs for calculating functions on a digital computer [in Russian], Institute of Cybernetics, 4, 95-102.
  7. Malachivskyy, P. S., Melnychok, L. S., Pizyur, Y. V. (2020). "Chebyshev Approximation of the Functions of Many Variables with the Condition," 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT), Zbarazh, Ukraine. doi: 10.1109/CSIT49958.2020.9322026.
  8. Kalenchuk-Porkhanova, A. A., Vakal, L. P. (2007). Construction of the best uniform approximations of functions of many variables. Computer tools, networks and systems, 6, 141–148. [in Ukrainian].
  9. Malachivskyy, P. S., Pizyur, Y. V., Malachivskyi, R. P., Ukhanska, O. M. (2020). Chebyshev approximation of functions of several variables. Cybernetics and Systems Analysis, 56(1), 118-125.
    DOI https://doi.org/10.1007/s10559-020-00227-8
  10. Filip, S.-I., Nakatsukasa, Y., Trefethen, L. N., Beckermann, B. (2017). Rational minimax approximation via adaptive barycentric representations.
    DOI https://doi.org/10.1137/17m1132409
  11. Nakatsukasa, Y., Sete, `O., Trefethen, L. N. (2018). The AAA algorithm for rational approximation. SIAM J. SCI. COMPUT. 2018, 40(3), A1494–A1522.
    DOI https://doi.org/10.1137/16m1106122
  12. Malachivskyy, P. S., Montsibovych, B. R., Pizyur, Y. V., Malachivskyi, R. P. (2019). “Chebyshev approximation of functions of two variables by a rational expression,” [in Ukrainian] Matematychne ta Komp. Modelyuvannya, Ser. Tekhnichni Nauky, 19, 75–81. DOI:10.32626/2308-5916.2019-19.75-81.
    DOI https://doi.org/10.32626/2308-5916.2019-19.75-81
  13. Malachivskyy, P. S., Pizyur, Y. V., Malachivskyi, R. P. (2020). Chebyshev approximation by the rational expression of functions of many variables. Cybernetics and Systems Analysis, 56(5), 118-125.
    DOI https://doi.org/10.1007/s10559-020-00227-8
  14. Malachivskyy, P. S., Pizyur, Y. V. (2016). Solving Problems in the Maple Environment [in Ukrainian], RASTR-7.
  15. Malachivskyy, P. S., Skopetsky, V. V. (2013). Continuous and Smooth Minimax Spline Approximation [in Ukrainian], Naukova Dumka, Kyiv.
Published
2021-09-03
How to Cite
Melnychok, L. (2021). Chebyshev approximation of functions of two variables by a rational expression with interpolation. PHYSICO-MATHEMATICAL MODELLING AND INFORMATIONAL TECHNOLOGIES, (33), 33-39. https://doi.org/10.15407/fmmit2021.33.033