Modeling of carbon monoxide oxidation on the catalytic surface in the two-dimensional case

Fìz.-mat. model. ìnf. tehnol. 2017, 26:83-89

  • Iryna Ryzha Lviv Polytechnic National University
Keywords: catalytic oxidation reaction, reaction-diffusion model, mathematical modeling of reaction-diffusion processes

Abstract

A two-dimensional model of carbon monoxide (CO) catalytic oxidation on a platinum (Pt) surface for the Langmuir-Hinshelwood mechanism is investigated. The adsorbate-driven (1×1)-(1×2) structural phase transition of Pt(110) and the formation of new crystal planes on the catalytic surface (faceting) as well as the effect of the substrate temperature are taken into account. It is shown that the stability region for CO oxidation reaction changes when two dimensions are taken into account. Similarly to the one-dimensional case, the reaction of CO oxidation on Pt-catalyst surface is periodic in the stability region. Mixed-mode oscillations (MMO) for CO and oxygen (O) surface coverages as well as the fraction of the surface in the non-reconstructed (1×1)-state were found. Such behavior cannot be predicted by one-dimensional models when the equation for the change of degree of faceting is not taken into account.

References
  1. Zaikin, A. N., Zhabotinsky, A. M. (1970). Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature, 225, 535-537.
    DOI https://doi.org/10.1038/225535b0
  2. Rotermund, H. H., Engel, W., Kordesch, M., Ertl, G. (1990). Imaging of spatiotemporal pattern evolution during carbon monoxide oxidation on platinum. Nature, 343, 355-357.
    DOI https://doi.org/10.1038/343355a0 DOI
  3. Jakubith, S., Rotermund, H. H., Engel, W., von Oertzen, A., Ertl, G. (1990). Spatiotemporal concentration patterns in a surface reaction: Propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett., 65, 3013-3016.
    DOI https://doi.org/10.1103/PhysRevLett.65.3013
  4. Nettesheim, S., von Oertzen, A., Rotermund, H. H., Ertl, G. (). Reaction diffusion patterns in the catalytic CO oxidation on Pt(110): Front propagation and spiral waves. J. Chem. Phys., 98, 9977-9985.
    DOI https://doi.org/10.1063/1.464323
  5. Kim, M., Bertram, M., Pollmann, M., von Oertzen, A., Mikhailov, A. S., Rotermund, H. H., Ertl, G. (2001). Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110). Science, 292, 1357-1360.
    DOI https://doi.org/10.1126/science.1059478
  6. Wolff, J., Papathanasiou, A. G., Kevrekidis, I. G., Rotermund, H. H., Ertl, G. (2001). Spatiotemporal addressing of surface activity. Science, 294, 134-137.
  7. Slinko, M. M., Jaeger, N. I. (1994). Oscillating heterogeneous catalytic systems (Studies in surface science and catalysis).Amsterdam: Elsevier.
  8. Baxter, R. J., Hu, P. (2002). Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem. Phys., 116(11), 4379-4381.
    DOI https://doi.org/10.1063/1.1458938
  9. Gomer, R. (1990). Diffusion of adsorbates on metal surfaces. Rep. Prog. Phys., 53(7), 917-1002.
    DOI https://doi.org/10.1088/0034-4885/53/7/002
  10. Kellogg, G. L. (1985). Direct observations of the (1×2) surface reconstruction on the Pt(110) plane. Phys. Rev. Lett., 55, 2168-2171.
    DOI https://doi.org/10.1103/PhysRevLett.55.2168
  11. Gritsch, T., Coulman, D., Behm, R. J., Ertl, G. (1989). Mechanism of the CO-induced (1×2)-(1×1) structural transformation of Pt(110). Phys. Rev. Lett., 63, 1086-1089.
    DOI https://doi.org/10.1103/PhysRevLett.63.1086
  12. Ladas, S., Imbihl, R., Ertl, G. (1988). Kinetic oscillations and facetting during the catalytic CO oxidation. Surf. Sci., 198, 42-68.
    DOI https://doi.org/10.1016/0039-6028(88)90471-2
  13. Kostrobij, P. P., Ryzha, I. A. (2016). Modeling of carbon monoxide oxidation process on the twodimensional catalyst surface. Math. Model. Comput., 3(2), 146-162.
    DOI https://doi.org/10.23939/mmc2016.02.146
  14. Shtiller, V. (2000). Uravnenie Arreniusa i neravnovesnaya kinetika. M.: Mir.
  15. Cisternas, Y., Holmes, P., Kevrekidis, I. G., Li, X. (2003). CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. J. Chem. Phys., 118(7), 3312-3328.
    DOI https://doi.org/10.1063/1.1531070
  16. Krischer, K., Eiswirth, M., Ertl, G. (1992). Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys., 96, 9161-9172.
    DOI https://doi.org/10.1063/1.462226
  17. Bzovska, I. S., Mryhlod, I. M. (2016). Poverkhnevi struktury v katalitychnii reaktsii monooksydu vuhletsiu. Ukr. fiz. zhurn., 61(2), 140-148.
  18. Eiswirth, M., Krischer, K., Ertl, G. Nonlinear dynamics in the CO-oxidation on Pt single crystal surfaces. Appl. Phys. A., 51, 79-90.
    DOI https://doi.org/10.1007/bf00324269
Published
2018-11-06
How to Cite
Ryzha, I. (2018). Modeling of carbon monoxide oxidation on the catalytic surface in the two-dimensional case. PHYSICO-MATHEMATICAL MODELLING AND INFORMATIONAL TECHNOLOGIES, (26), 83-89. https://doi.org/10.15407/fmmit2017.26.083