Parameter identification for fractional-fractal model of filtration-consolidation dynamics using artificial neural networks
Fìz.-mat. model. ìnf. tehnol. 2021, 32:52-57
Abstract
Artificial neural networks are applied to solve parameters identification problem for one-dimensional fractional-fractal model of filtration consolidation processes in geo-porous media in the conditions of salt transfer. Based on the indicators of the state of the process in a fixed number of observation points, the values of the orders of fractional derivatives with respect to time and space variables were restored. Testing results based on data sets obtained from noised solutions of the direct problem show the adequacy of fractional derivatives orders restoration with at least 25 observation points and noise levels less than 10%.
References- Allwright A., Atangana, A. (2018). Fractal advection-dispersion equation for groundwater transport in fractured aquifers with self-similarities. The European Physical Journal Plus, 133(2), 1–14.
DOI doi.org/10.1140/epjp/i2018-11885-3 - Chen, W. (2006). Time-space fabric underlying anomalous diffusion. Chaos, Soliton. Fract., 28(4), 923–929.
DOI doi.org/10.1016/j.chaos.2005.08.199 - Cai, W., Chen, W., Wang, F. (2018). Three-dimensional Hausdorff derivative diffusion model for isotropic/anisotropic fractal porous media. Thermal Science, 22(1), S1-S6.
DOI doi.org/10.2298/tsci170630265c - Bohaienko, V., Bulavatsky, V. (2020). Fractional-Fractal Modeling of Filtration-Consolidation Processes in Saline Saturated Soils. Fractal and Fractional, 4(4), 59.
DOI doi.org/10.3390/fractalfract4040059 - Bondarenko, A. N., Bugueva, T. V., Dedok, V. A. (2016). Inverse problems of anomalous diffusion theory: an artificial neural network approach. Journal of Applied and Industrial Mathematics, 10(3), 311-321.
- Florin, V. A. (1961). Fundamentals of Soil Mechanics. Moscow, USSR: National Technical Information Service.
DOI doi.org/10.1134/s1990478916030017 - Vlasyuk, A. P., Martynyuk, P. M. (2004). Matematychne modelyuvannya konsolidatsiyi hruntiv v protsesi filtratsiyi solovykh rozchyniv. Rivne: Vyd–vo UDUVHP.
- Podlubny, I. (1999). Fractional differential equations. New York: Academic Press.
- Samarskii, A. (2001). The Theory of Difference Schemes. New York: CRC Press.
Copyright (c) 2021 Vsevolod Bohaienko, Volodymy Bulavatsky, Anatolij Gladky (Автор)

This work is licensed under a Creative Commons Attribution 4.0 International License.