On Algorithm of Integrability Classification of the Nonlinear Dynamical Systems via Computer Algebra Methods

Fìz.-mat. model. ìnf. tehnol. 2021, 32:7-12

  • Bohdan Fil Department of Higher Mathematics Lviv Polytechnic National University, 12 Bandera street, Lviv, Ukraine, 79013
  • Yaroslav Pelekh Department of Higher Mathematics Lviv Polytechnic National University, 12 Bandera street, Lviv, Ukraine, 79013
  • Myroslava Vovk Department of Higher Mathematics Lviv Polytechnic National University, 12 Bandera street, Lviv, Ukraine, 79013
  • Halyna Beregova Department of Higher Mathematics Lviv Polytechnic National University, 12 Bandera street, Lviv, Ukraine, 79013
  • Tatiana Magerovska Department of Computational Mathematics and Programming Lviv Polytechnic National University, 12 Bandera street, Lviv, Ukraine, 79013
  • Pavlo Pukach Department of Artifical Intelligence Systems Lviv Polytechnic National University, 12 Bandera street, Lviv, Ukraine, 79013
Keywords: Computer algebra system, Wolfram Mathematica, Nonlinear wave equation, Conservation laws, Integrability nonlinear dynamical systems, Conserved energy, KdV equation

Abstract

There is developed an algorithm to classify integrable nonlinear dynamical systems via Wolfram Mathematica. The hierarchy of conservation laws for the nonlinear dynamical system can be cal-culated by this algorithm. There are demonstrated some modifications of nonlinear Korteweg-de Vries equations integrated by inverse scatering method.

References
  1. Olver, P. J. (1986). Applications of Lie Groups to Differential Equations. New York: Springer-Verlag.
  2. Mitropol'skiy, Yu. A., Bogolyubov, N. N., Prikarpatskiy, A. K., Samoylenko, V. G. (1987). Integriruyemyye dinamicheskiye sistemy: spektral'nyye i differentsial'no-geometricheskiye aspekty. K.: Naukova dumka.
  3. Sanders, J. A., Roelofs, M. (1994). An algorithmic approach to conservation laws using the 3-dimensional Heisenberg algebra. Tech. Rep. 2 RIACA.
  4. Sanders, J. A., Wang, J. P. (1995). On the (non)existence of conservation laws for evolution equations. Tech. Rep. WS-445. Amsterdam : Vrije Universiteit.
  5. Wolf, T., Brand, A., Mohammadzadeh, M. (1999). Computer algebra algorithms and routines for the computa¬tions of conservation laws and fixing of gauge in differential expressions. J.Symb.Comp., 27, 221-238. DOI doi.org/10.1006/jsco.1998.0250
  6. Göktas, Ü., Hereman, W. (1996). Symbolic computation of conserved densities for systems of nonlinear evolution equations. Technical Report MCS-96-06. Colorado School of Mines.
    DOI doi.org/10.1006/jsco.1998.0250
  7. Ruo-Xia, Yao, Zhi-Bin, Li. (2006). CONSLAW: A Maple package to construct the conservation laws for nonlinear evolution equations. Applied Mathematics and Computation, 173, 616-635.
    DOI doi.org/10.1016/j.amc.2005.04.049
  8. Prykarpats'kyy, A. K., Fil', B. M. (1992). Category of topological jet manifolds and certain applications in the theory of nonlinear infinite-dimensional dynamical systems. Ukrainian Mathematical Journal, 44(9), 1136-1148.
    DOI doi.org/10.1016/j.amc.2005.04.049
  9. Mitropol'skii, Yu. O., Prikarpats'kii, A. K., Fil', B. M. Some aspects of a gradient holonomic algorithm in the theory of integrability of nonlinear dynamic systems and computer algebra problems. Ukrainian Mathematical Journal, 43(1), 63-74.
    DOI doi.org/10.1007/bf01066906
  10. Fil', B. N., Prikarpatskii, A. K., Pritula, N. N. 1988. Quantum lie algebra of currents - The universal algebraic structure of symmetries of completely integrable dynamical systems. Ukrainian Mathematical Journal, 40(6), 645-649.
    DOI doi.org/10.1007/bf01057184
  11. Samoilenko, V. G., Fil', B. N. 1988. Algebras of symmetries of completely integrable dynamical systems. Ukrainian Mathematical Journal, 40(2), 164-168.
    DOI doi.org/10.1007/bf01056471
  12. Pukach, P. Y. 2012. On the unboundedness of a solution of the mixed problem for a nonlinear evolution equation at a finite time, Nonlinear Oscillations, 14(3), 369-378.
    DOI doi.org/10.1007/s11072-012-0164-6
  13. Fil', B., Pritula, M. 1991. Primeneniye metodov kompyuternoy algebry k nakhozhdeniyu invariantov nelineynykh dinamicheskikh sistem. Tezisy dokladov nauchno-tekhnicheskoy konferentsii "Primeneiye vycheslitel'noy tekhniki i matematicheskikh metodov v nauchnykh iekonomicheskikh issledovaniyakh".
Published
2021-06-27
How to Cite
Fil, B., Pelekh, Y., Vovk, M., Beregova, H., Magerovska, T., & Pukach, P. (2021). On Algorithm of Integrability Classification of the Nonlinear Dynamical Systems via Computer Algebra Methods. PHYSICO-MATHEMATICAL MODELLING AND INFORMATIONAL TECHNOLOGIES, (32), 7-12. https://doi.org/10.15407/fmmit2021.32.008