Numerical model of mass transfer processes using fractional derivatives

Fìz.-mat. model. ìnf. tehnol. 2020, 28:26-32

  • Nazariy Lopuh CENTRE OF MATHEMATICAL MODELLING OF PIDSTRYHACH INSTITUTE FOR APPLIED PROBLEMS OF MECHANICS AND MATHEMATICS NATIONAL ACADEMY OF SCIENCES OF UKRAINE
Keywords: gas filtration, fractional derivatives, non-stationary process, finite element method

Abstract

The article describes the scheme of construction and application of finite element method using Grunwald-Letnikov algorithm. Obtained results make it possible to estimate influence of fractional derivative order in terms of time and space on process of gas filtration in porous medium. Numerical ecperification and analysis performed

References
  1. Vasilev, V. V., Simak, L. A. (2008). Drobnoe ischislenie i approksimacionnye metody v modelirovanii dinamicheskih sistem. Nauchnoe izdanie NAN Ukrainy. Kiev.
  2. Pianylo, Ya. D., Lopukh, N. B., Halii, P. P. (2011). Chyslova model plasta pidzemnoho skhovyshcha hazu na osnovi metodu skinchennykh elementiv. Naftova i hazova promyslovist, 1, 38-42.
  3. Aleksandrov, A. V., Yakovlev, E. I. (1974). Proektirovanie i ekspluataciya sistem dalnego transporta gaza. Moskva: Nedra.
  4. Carmona, R., Ludkovski, M. (2005). Gas storage and supply guarantees: an optimal switching approach. Management Science.
  5. Cook, Robert D. (2002). Concept and Applications of Finite Element Analysis, fourth edition. John Wiley & Sons.
  6. Lopuh, N. B, Pyanylo, Ya. D. (2014). Numerical analysis of models with fractional derivatives for gas filtration in porous media. Journal of Coupled Systems and Multiscale Dynamics, 2(1), 15-19.
    DOI https://doi.org/10.1166/jcsmd.2014.1035
Published
2020-01-27
How to Cite
Lopuh, N. (2020). Numerical model of mass transfer processes using fractional derivatives. PHYSICO-MATHEMATICAL MODELLING AND INFORMATIONAL TECHNOLOGIES, (28, 29), 26-32. https://doi.org/10.15407/fmmit2020.28.026